PTC CONSULTING ENGINEERS

Residential Building at 10 Pacific Drive, Port Macquarie Structural Report

Report No. **S20244401-RPT-1 [REV.7]** Date 06 June 2022 For Laurus Projects Pty Ltd

Email: ptcce@theptcgroup.com.au Web: <u>www.ptcce.com.au</u> Phone: 02 9714 0600

Document Co Engineers	ntrol				РТС	Consulting
Report Title:	Residential Building at 10 Pacific Drive Port Macquarie - Structural Report					
Client:	Laurus Proje	cts Pty Ltd				
Rev	Date	Rev Details	Inspector	Author	Verifier	Approver
0	24/11/20	First Revision	WZ	НКН	SY	WZ
1	19/01/21	First Revision	WZ	НКН	SY	WZ
2	20/04/22	Second Revision	WZ	JO	SY	WZ
3	05/05/22	Retaining Wall	WZ	JO	SY	WZ
4	12/05/22	Report Amendments	WZ	JO	SY	WZ
5	19/05/22	Report Amendments	WZ	JO	SY	WZ
6	27/05/22	Footing Amendments	WZ	JO	JP	WZ
7	06/06/22	Figure 10 Amendments	WZ	JO	JP	WZ

Current Revision

7

Approva	ıl					
Author S	Signature	Jemestic	Approve Signatu		A	
Name:	James Ou		Name:	William Zh	ang	
Title:	Structural	Engineer	Title:	Director of	f Engineering	

Table of Contents

1 Executive Summary	5
2 Proposed Development	;
3 The Site	;
4. Structural Description	ŀ
4.1 Basement	ŀ
4.2 Superstructure	;
4.3 Stability6	;
4.4 Foundation6	;
5 Essential External Work Items6	;
5.2 Driveway Crossing7	,
5.3 Retaining Wall7	,
5.4 Basement Structural Design – Landscape Review9)
6 Design Codes)
7 Design Loads9)
7.1 Vertical Loads9)
7.2 Wind Loads)
7.3 Earthquake Loads)
8 Deflection Limits)
8.1 Lateral Deflection)
8.2 Vertical Deflection)
9 Materials)
9.1 Concrete)
9.2 Reinforcement)
9.3 Post-Tensioning Tendons10)
10 Fire Resistance Levels for Structural Elements11	-

1 Executive Summary

This design brief is a summary of the structural concept, data assumptions, principles and proposed construction methods and materials to be used in the design of the Proposed Residential Flat Building on Lot 1, 2 of DP 538077, and A of DP 441800 in Pacific Drive, Port Macquarie.

This document aims to note down all project data and information, relevant design criteria and other materials associated with the structural design of this project. As new information or updates are available, the contents will be revised and changed accordingly.

This is to note that the building is still in an early design stage. The structural design may change with architectural changes, further client's requests or to comply with Council's requirements.

For the basement and the foundation design and construction of the proposed development, reference is made from the Geotechnical Investigation (GI) Report prepared by EI Australia (report no. E24947.G03 dated 21 January 2021.

2 Proposed Development

The proposed development is a residential building consisting of a Lower Ground, Ground Floor, and 6 levels located in Pacific Drive, Port Macquarie. The building entails the following:

- approximately 44 apartment units;
- 2 level basement car parking;
- the vehicle access into the Building from Pacific Drive on south-east corner of the building site.

<u>3 The Site</u>

The site is in a trapezoidal shape on plan, about average 78m in length and 45m in width. It consists of a predominate fall north-east to south-west direction from approximately 40 to 29m AHD. A 2 storey motel currently sitting on the northwest corner will be demolished.

The site is surrounded by following streets. North of the Site is Windmill Street. East is the Pacific Drive which is about 50m to the coastline. To the South is Home Street and Oxley Crescent is on the west side. The development site consists of the following lots in Pacific Drive which is about 50m from the coast are amalgamated to form the Building site.

Lot 1DP 538077 Lot 2 DP 538077 Lot A DP 441800

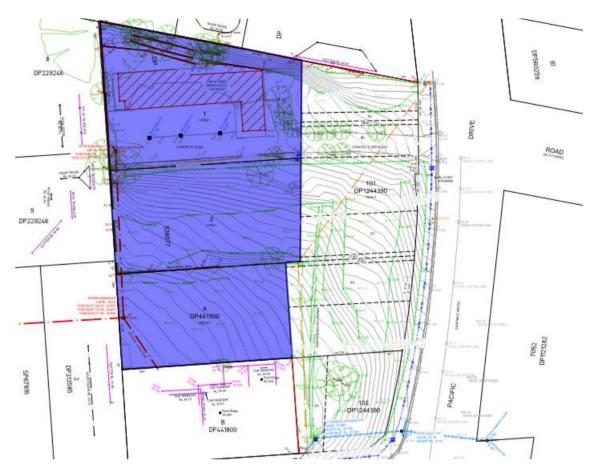


Fig 1 - Proposed Site and Building Lots

4. Structural Description

The proposed residential building has 6 levels of apartments on top of 2 levels car park. The car park is in Lower Ground and part of Ground Floor.

4.1 Basement

Based on the latest architectural basement plans (Fig 3), the basement outline is offset 5.6m from the northern and 1.5m to 9m from the western site boundaries, 1.3m to 6.8m for the eastern site boundary and minimum of 10m from the southern site boundary. The GI suggested that temporary batters with safe angle of 1 vertical to 1 horizontal can be adopted along the eastern and southern excavation perimeters (if required). The permanent basement perimeter wall will be in the form of in-situ reinforced concrete against the backfill and will be sitting on strip footing. Agg-line / drainage layer shall be provided along and behind the wall to collect and drain away seepage water hence preventing hydrostatic build up.

On the northern, eastern, and western excavation perimeters without sufficient boundary setback, a shoring wall system consisting anchored soldier piles with infill shotcrete panels shall be adopted. The soldier piles shall be closely spaced where neighbouring buildings / infrastructures present to reduce the lateral movements and the risk of potential damage.

As the GI suggested that groundwater is not likely to be encountered and seepages volume would be low, it is envisaged that the basement slab will be in a form of slab on ground underlaid by sub soil drain and pump out system, subject to further confirmation from the Geotechnical Engineer.

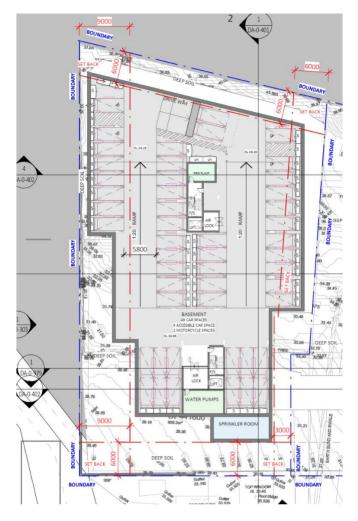


Fig 3 - Basement Plan Showing Minimum 6m Setback

Fig 4 – Temporary Batter Excavation

4.2 Superstructure

It is anticipated that a split-level post-tensioned transfer flat plate will be adopted and supported on concrete columns at carpark levels. All columns over shall stack up and proceed to roof. The non-transfer floors will be either post-tensioned or reinforced flat plate.

All exposed slab shall be waterproofed with an applied waterproof membrane in accordance with architectural specifications.

Fig 5 – Typical Floor Plan

4.3 Stability

The lift core and stair core walls will resist the lateral loads on the buildings due to wind, earthquake, and unbalanced soil retention. The walls will be in-situ reinforced concrete and will be supported by the coupling force given by the lateral soil pressure acting on core bases or piles where applicable.

4.4 Foundation

Refer to the GI, cast in situ concrete piles (such as CFA piles) founded into hard clays shall be a suitable foundation system to support the building columns and walls. The piles founded within hard clays can be designed for a maximum allowable bearing pressure of 400kPa.

5 Essential External Work Items

5.2 Driveway Crossing

The driveway crossing within the road reserve for the carpark entrance shall conform to Port Macquarie Hastings Council Heavy Duty Standard Drawing ASD202.

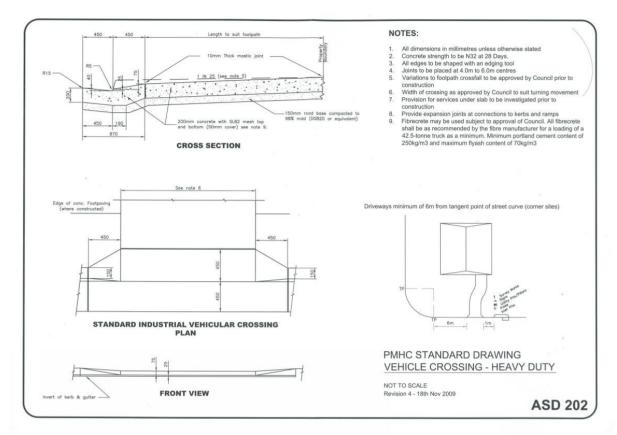


Fig 8 - Driveway Slab to Proposed Residential Flat crossing Pacific Drive Road Reserve

5.3 Retaining Wall

The retaining wall for the northern boundary is to have no more than a 1:4 slope to the top terrace area. The location of the retaining wall is shown in Figure 9. Once the shoring walls have been constructed, the construction sequence is shown in Figure 10. The sequence is to first build a 1:1 batter, install piled foundation (450 diameter at no larger than 2500mm centres), capping beam (500mm x 500mm), construct the retaining wall, then fill to a maximum slope of 1:4. See Fig 9, 10 and 11 for more information.

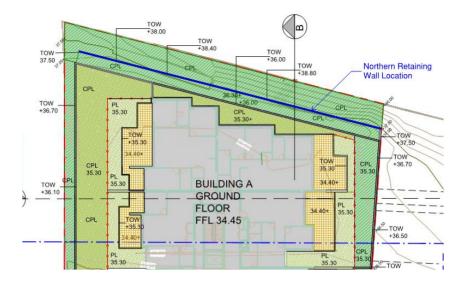


Fig 9 – Location of Northern Retaining Wall

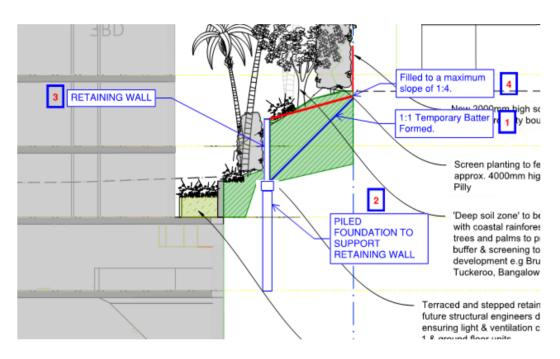


Fig 10 – Construction Sequence of Northern Retaining Wall

		RETAINING WA	LL SCHEDULE TYP	PE B S5*		
TOTAL HEIGHT 'H' (mm)	HEIGHT OF BLOCK TYPE			"B' (mm)	'V' & 'X' BARS	'K' BARS
	150 SERIES	200 SERIES	300 SERIES	B (mm)	V & X BAKS	N DARS
800	800		-	800	N12 AT400	
1000	1000	-	-	900	N12 AT400	-
1200	1200		-	1000	N12 AT400	
1400		1400	-	1100	N16 AT400	
1600		1600	-	1200	N16 AT400	-
1800	-	1800	-	1400	N16 AT400	-
2000	-	1400	600	1600	N20 AT400	-
2200		1400	800	1800	N16 AT400	N16 AT400
2400		1600	800	2000	N16 AT400	N16 AT400
2600		1600	1000	2100	N20 AT400	N20 AT400
2800		1800	1000	2200	N16 AT200	N16 AT200
3000		2000	1000	2400	N16 AT200	N16 AT200
3200	-	2000	1200	2600	N20 AT200	N16 AT200
3400		2000	1400	2800	N20 AT200	N16 AT200

Fig 11 –	Retaining	Wall Schedule	per Total Height
----------	-----------	---------------	------------------

5.4 Basement Structural Design – Landscape Review

The basement design will be configured structurally to accommodate the depth of the podium planters and landscaping, without amending the layout of the basement or depth of the landscaping.

6 Design Codes

The following codes and standards will form the basis for the structural design:

BCA	Building Code of Australia
AS/NZS 1170 Pt 0	General Principles
AS/NZS 1170 Pt 1	Permanent, imposed and other actions
AS/NZS 1170 Pt 2	Wind actions
AS/NZS 1170 Pt 4	Earthquake
AS 2159	Piling Code
AS 3600	Concrete Structures Code
AS 3700	Masonry Code
AS 4100	Steel Structures Code
AS/NZS 1170 Pt 2 AS/NZS 1170 Pt 4 AS 2159 AS 3600 AS 3700	Wind actions Earthquake Piling Code Concrete Structures Code Masonry Code

7 Design Loads

7.1 Vertical Loads

Superimposed Dead Load (kPa)	Live Load (kPa)
1.5	1.5
+1.5kN/m intertenancy wall	
2.0	2.0
2.0	4.0
2.0	1.5
0.5	2.5
0.5	5.0
	1.5 +1.5kN/m intertenancy wall 2.0 2.0 2.0 0.5

Appropriate façade loads refer to arch elevation drawings

7.2 Wind Loads

The wind Loads will be assessed in accordance with AS 1170.2.

Importance Level	II
Annual Probability of Exceedance	1:500 (ULS). 1:25 (SLS)
Region	A2
Regional Wind Speed	45 m/s (ULS), 37 m/s (SLS)
Terrain Category	1.5
Topographic Multiplier	1.0
Shielding Multiplier	1.0

7.3 Earthquake Loads

The earthquake loads will be assessed in accordance with AS 1170.4.				
Importance Level	II			
Annual Probability of Exceedance	1:500			
Probability Factor, kp	1.0			
Hazard Factor Z	0.08			
Soil Classification	to be confirmed by Geotechnical Engineer			
Earthquake Design Category	II			

8 Deflection Limits

8.1 Lateral Deflection

Interstorey drift due to serviceability wind – Floor Height/500 Interstorey drift due to earthquake – 1.5% Floor Height

8.2 Vertical Deflection

	Total Long Term	Incremental
Slab Cantilever Transfer Slab edge	span/250 or 25mm span/125 or 25mm span/500 or 15mm 15mm	span/500 for brittle finishes span/250 for brittle finishes

9 Materials

9.1 Concrete

Various strength grade of concrete will be adopted. Concrete properties shall refer to AS3600 Section 3.1.

9.2 Reinforcement

Modulus of Elasticity Yield Strength 200,000 MPa 500MPa (Class N), 250MPa (Class R)

9.3 Post-Tensioning Tendons

Strand Type Modulus of Elasticity 12.7mm 200,000 MPa

Minimum Breaking Load 184 kN

10 Fire Resistance Levels for Structural Elements

The fire resistance levels for structural elements shall be in accordance with the Building Code of Australia unless advised in the Fire Engineering Report for this project.

Concrete covers are to be in accordance with AS 3600 Section 5. The fire resistance levels of blockwork shall refer to Architect's specifications.

THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY